Dimension for Stochastic Ginzburg–Landau Equations
نویسنده
چکیده
We consider a randomly forced Ginzburg–Landau equation on an unbounded domain. The forcing is smooth and homogeneous in space and white noise in time. We prove existence and smoothness of solutions, existence of an invariant measure for the corresponding Markov process and we define the spatial densities of topological entropy, of measure-theoretic entropy, and of upper box-counting dimension. We prove inequalities relating these different quantities. The proof of existence of an invariant measure uses the compact embedding of some space of uniformly smooth functions into the space of locally square-integrable functions and a priori bounds on the semi-flow in these spaces. The bounds on the entropy follow from spatially localised estimates on the rate of divergence of nearby orbits and on the smoothing effect of the evolution. Stochastic Ginzburg–Landau Equations 1
منابع مشابه
Exact solutions of the 2D Ginzburg-Landau equation by the first integral method
The first integral method is an efficient method for obtaining exact solutions of some nonlinear partial differential equations. This method can be applied to non integrable equations as well as to integrable ones. In this paper, the first integral method is used to construct exact solutions of the 2D Ginzburg-Landau equation.
متن کاملSome new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation
In this paper, we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method, homogeneous balance method, extended F-expansion method. By using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...
متن کاملThe Ginzburg-Landau Equations for Superconductivity with Random Fluctuations
Thermal fluctuations and material inhomogeneities have a large effect on superconducting phenomena, possibly inducing transitions to the non-superconducting state. To gain a better understanding of these effects, the Ginzburg–Landau model is studied in situations for which the described physical processes are subject to uncertainty. An adequate description of such processes is possible with the...
متن کاملStochastic dynamics of Ginzburg-Landau vortices in superconductors
The phenomenological Ginzburg-Landau model for lowtemperature superconductivity has received much attention. However, it is not applicable to physical contexts that do not take into account factors such as material defects or thermal fluctuations. Thus, existing studies of the stability, dynamics, interactions, and other properties of the vortex state do not necessarily carry over to situations...
متن کاملSweeping Algorithms for Inverting the Discrete Ginzburg-Landau Operator
The Ginzburg-Landau equations we study arise in the modeling of superconductivity. One widely used method of discretizing the equations together with the associated periodic boundary conditions, in the case of a rectangle of dimension 2, leads to a ve-point stencil. Solving the system means inverting a sparse matrix of dimension N 2 , where N is the number of grid points on each side of the rec...
متن کامل